\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx\) [1294]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 174 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=-\frac {(A-3 B+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(3 A-3 B+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}+\frac {(3 A-3 B+5 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}} \]

[Out]

-(A-B+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))/sec(d*x+c)^(3/2)+1/3*(3*A-3*B+5*C)*sin(d*x+c)/a/d/sec(d*x+c)^(1/2)-(A-3
*B+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)
*sec(d*x+c)^(1/2)/a/d+1/3*(3*A-3*B+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+
1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {4306, 3120, 2827, 2719, 2715, 2720} \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {(3 A-3 B+5 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {(A-B+C) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}+\frac {(3 A-3 B+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}-\frac {(A-3 B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

-(((A - 3*B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d)) + ((3*A - 3*B + 5*C
)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) - ((A - B + C)*Sin[c + d*x])/(d*(a
+ a*Cos[c + d*x])*Sec[c + d*x]^(3/2)) + ((3*A - 3*B + 5*C)*Sin[c + d*x])/(3*a*d*Sqrt[Sec[c + d*x]])

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3120

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a
 + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx \\ & = -\frac {(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \left (-\frac {1}{2} a (A-3 B+3 C)+\frac {1}{2} a (3 A-3 B+5 C) \cos (c+d x)\right ) \, dx}{a^2} \\ & = -\frac {(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}-\frac {\left ((A-3 B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a}+\frac {\left ((3 A-3 B+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx}{2 a} \\ & = -\frac {(A-3 B+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}+\frac {(3 A-3 B+5 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}+\frac {\left ((3 A-3 B+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a} \\ & = -\frac {(A-3 B+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(3 A-3 B+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}+\frac {(3 A-3 B+5 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.52 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.94 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=-\frac {2 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (3 (A-3 B+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )-(3 A-3 B+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {1}{2} (3 A-3 B+5 C+2 C \cos (c+d x)) \sec \left (\frac {1}{2} (c+d x)\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{3 a d (1+\cos (c+d x))} \]

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*Cos[(c + d*x)/2]^2*Sqrt[Sec[c + d*x]]*(3*(A - 3*B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] - (3
*A - 3*B + 5*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + ((3*A - 3*B + 5*C + 2*C*Cos[c + d*x])*Sec[(c +
d*x)/2]*(Sin[(c + d*x)/2] - Sin[(3*(c + d*x))/2]))/2))/(3*a*d*(1 + Cos[c + d*x]))

Maple [A] (verified)

Time = 3.69 (sec) , antiderivative size = 300, normalized size of antiderivative = 1.72

method result size
default \(-\frac {\sqrt {\left (-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (3 A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 A E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 C F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 C E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-8 C \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (6 A -6 B +18 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-3 A +3 B -7 C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(300\)

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(3*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*EllipticE(cos(1/2*d*x+1/2*c),
2^(1/2))-3*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+5*C*EllipticF(cos
(1/2*d*x+1/2*c),2^(1/2))+9*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-8*C*sin(1/2*d*x+1/2*c)^6+(6*A-6*B+18*C)*si
n(1/2*d*x+1/2*c)^4+(-3*A+3*B-7*C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*
d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.65 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {{\left (\sqrt {2} {\left (-3 i \, A + 3 i \, B - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A + 3 i \, B - 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (3 i \, A - 3 i \, B + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A - 3 i \, B + 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (i \, A - 3 i \, B + 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - 3 i \, B + 3 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-i \, A + 3 i \, B - 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + 3 i \, B - 3 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (2 \, C \cos \left (d x + c\right )^{2} + {\left (3 \, A - 3 \, B + 5 \, C\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(-3*I*A + 3*I*B - 5*I*C)*cos(d*x + c) + sqrt(2)*(-3*I*A + 3*I*B - 5*I*C))*weierstrassPInverse(-4
, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(3*I*A - 3*I*B + 5*I*C)*cos(d*x + c) + sqrt(2)*(3*I*A - 3*I*B +
 5*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2)*(I*A - 3*I*B + 3*I*C)*cos(d*x
+ c) + sqrt(2)*(I*A - 3*I*B + 3*I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d
*x + c))) - 3*(sqrt(2)*(-I*A + 3*I*B - 3*I*C)*cos(d*x + c) + sqrt(2)*(-I*A + 3*I*B - 3*I*C))*weierstrassZeta(-
4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(2*C*cos(d*x + c)^2 + (3*A - 3*B + 5*C)*c
os(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {\int \frac {A}{\cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {B \cos {\left (c + d x \right )}}{\cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {C \cos ^{2}{\left (c + d x \right )}}{\cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

(Integral(A/(cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x) + Integral(B*cos(c + d*x)/(cos(c + d*x)
*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x) + Integral(C*cos(c + d*x)**2/(cos(c + d*x)*sqrt(sec(c + d*x)) +
sqrt(sec(c + d*x))), x))/a

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))), x)